A613u3 0 WawedaQ $31B1S PALUN AY) YIM JIRIIUOD J13PUN "JU| UOIBIJOSSY YOIBISIY SANISIaAILN Aq pejeiado *1=_

8£120 VIN ‘°8puque) "1§ uapiwn (9 ‘so18Lydolsy 10 133u3) §5AIPPY UMD,
S1220 VIN ‘uoisog ‘AysIaaTupy UOjsoq ‘satsAqd Jo 1wawizeda :SSIPPY WMD),

a3ned (1)) © UI SUOTULIS] 1AM SUO)IOS $SNOISTP APALIQ OS[R 3p) "UIIO] Y[Nq UT Ja33ew
-0 Jo duwa3sTXa aYy 3[qissodurt Supyew ‘s32a(qo 3saY3} 10} Izls WNTITXEW ® §I 3137}
‘3310] quonoy) alsmdal ay) Jo snedsq ‘aroWIYIM] IdRLMS 373 03 ABreyd 33
Surgsnd Jojonpuosradns e $3M0d2q WOOS Y3 sywejsuod Jurdnod IY3 jo samfea jo
a3uel e JOJ pUe JAISSRWI $3UI033q P3Y 38ned ay) ‘uayolq st A1jewmss (1) Ted01 23
TO0jI[Os 33 SPISUT 363 YIns st wolyemByuod uojros aYJ, "A[[ed1Joumu pue ATe>134Tewe
pa1eSnsaaur are se1jiedoid Itag) jo FWIOS PUR PILIISTOWSP 3Te UOIsIAASIP jsurede
£yiqe)s pue 9ouaysIxa Iy, "A1jewrwiAs (1)) pa8ned e yira p[ay rereds xsdwod € jo
£302y3 oY) UTYII4 PaISPISTOD Ire sUOIJRIMBYUOI Uoj[os [edrdojodos-uou redlsse[)

ALvnd ¥00od 410
S 3374 TYNIBIHO

1PR8qY

L£909 TI ‘o3=2rY)
08edTy ) JO A}ISIdATU() Y],
o154y J jo jmamyreda(,
901€6 VO ‘eieqIeg ejueg
RIUIOJTRD JOo A}ISIdATU[)
so1s£Y g Jo juamrjreda(y,

01509 TI ‘eiarieq ‘00§ Xod ' O'd
£10y2I0QRT 10jRIS[00Y [RUONIRN MII3]
121197 so1sAydorisy qe[rmIs]/ VSV Ng

01509 TI ‘elavieg ‘00§ Xod ‘O'd
£10}RI10QRT 10}BIS[IDY [RUONJRN TII3]

dnoin so1s£qd [e2133109Y ],

¢ pqMOIPIM "Nl 2OUAIMEBT ,SUD{IBAA PIBYITY

‘,$9qeYd§-Ualg 'y Swrer ¢, w997 Buoafury]

8861 ‘0¢ Iaquwaidsg
V-6€£1/88-qnd-dVIINITd

A10jel0QET 101813300y |BUONEN IW.id4

s[red-b pesnen

N89-11500

204d

{(Ferei
C5CL

<
E

¢—~EALL
) it

lat.

GAUCEL

3€9)

S
-

{(DASA-CK~-1¢&
baticral acceleratcr

T
L. 2

Uaclas
170072

G3/72







ORIGIHAL BRCE 1S
OF POOR QUALITY
1 Introduction

Non-topological solitons (NTSs) are extended objects that arise in theories with un-
broken global symmetries [1,2]. The simplest example of a NTS is the so-called Q-ball
that can appear in a U(1)-invariant theory with a single complex scalar field ¢ that has
non-linear self-interactions [1,3,4]. The results for Q-balls found in the literature m-ay be
applicable to models that possess an unbroken global U(1) symmetry such as B — L. In
this paper we study the properties of Q-balls in a local or gauged U(1) theory. Our work is
a first step in understanding how NTSs might arise in gauge theories such as electromag-
netism, the Weinberg-Salam model, or Grand Unified Theories (e.g., SU(5), SO(10), E).

A NTS is a non-dissipative solution to the classical field equations that, for fixed
charge Q, represents the field configuration with the lowest energy. For the Q-ball, the
basic structure is very simple. Outside the Q-ball, U(1) is unbroken and ¢ particles have
mass g (this is the true vacuum of the theory). Inside the Q-ball, U(1) is broken and a
condensate of the ¢ field forms with an energy per unit charge less than g. Furthermore,
the time-dependence of the ¢ field gives rise to a non-zero charge density. The negative
pressure of the false vacuum interior is balanced by the positive pressure from the confined
¢ particles (for possible creation mechanisms see [5]).

Coupling of ¢ to a U(1) gauge field leads to two basic effects. 1) Inside the Q-ball, the
U(1) symmetry is broken and the gauge field has a mass my. For Q-balls that are large
compared to the Compton wavelength of the gauge field (¢ = my!), the charge is pushed
to the surface of the Q-ball and the characteristic width of the shell in which most of the
charge resides is O(my?). It is in this limit that the Q-ball becomes superconducting. For
small Q-balls, the charge is only slightly enhanced near the surface. These results are a
clear signal that the Q-ball is behaving like a lump of superconducting matter (which it
must since U(1) is broken inside the Q-ball). 2) Gauged Q-balls can only be so big.

For small enough values of the charge Q and gauge coupling e, the ‘electrostatic’
energy of the Q-ball [=0(e?Q?/R)] is smaller than the other energies in the problem and
therefore we expect stable gauged Q-balls to exist. Suppose we fix e but slowly increase @
by bringing charges (i.e., free ¢ particles) to the surface of the Q-ball from very far away.

For some value of Q(= Q.maz) the cost in Coulomb energy for adding an extra unit of



charge becomes greater than the energy gained by bringing it from the true vacuum to the
false vacuum. From this point on it becomes energetically favorable to leave additional
charges as free ¢ particles. A corollary of this result is that for large enough values of e
there are no stable Q-balls. As will be discussed below, very small Q-balls are unstable
and evaporate into free particles. Therefore, stable Q-balls must have charge greater than
some value Quin. If Q,m,z < Qmin then there are no stable Q-balls.

The fact that there is 2 maximum value for the allowed charge of a gauged Q-ball
points to a fundamental difference with the ungauged (e = 0) case. In the e = 0 case, it
is possible to have bulk Q-matter occupying an arbitrarily large region of space. This is
impossible in the gauged case.

An outline of the paper is as follows: In Section II we describe the particle physics
setting for gauged Q-balls. We review the basic properties of ordinary (e = 0) Q-balls
and derive some general properties of gauged Q-balls. In Section III, we study gauged
Q-balls using trial functions for the fields. The calculations are carried out for thin
shell Q-balls and ones in which the gauge coupling and charge are assumed to be small.
(How small will be made explicit below.] Section IV is devoted to numerical results.
The equations of motion are numerically integrated on computer and some solutions
are obtained. When appropriate, these results are compared with the analytic results
obtained in the preceeding sections. In Section V we consider solitons with fermions that
are coupled to a U(1) gauge fleld. Finally, in Section VI, we summarize and discuss our

results.

2 General Setting

Consider a complex scalar field ¢(7,t) = f(7,t)exp(if(7,t))/v/2 coupled to a U(1)
gauge field A,. The Lagrange density for the theory is

L= 30uf0F + 37 (8,0 — eA,)? ~ U(f) - L Fu P (2.1

where F,, = 8,4, — 0,A, and U(f) is the U(1)-invariant scalar potential. [For definite-

ness, we take e > 0.] The conserved charge associated with the U(1) symmetry is

Q= / Prf2(6 — eAo) (2.2)
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where the dot means d/dt. For definiteness, we shall take @ to be positive.

We begin by reviewing the basic properties of ordinary (e = 0) Q-balls. We assume
that in the true vacuum U(1) is unbroken, so that the absolute minimum of the potential
U(f) occurs at f = 0. The mass x of a free ¢ particle is given by

, U

f=0

A necessary condition [4] for the existence of Q-balls is that

w? = min (2[;(2”) (2.4)

for some f = F, with F, finite and non-zero and 0 < w, < g. For large enough @, the

lowest energy state is a coherent configuration of the boson field ¢ confined to a finite
spatial regidn. Following Coleman[4], we refer to this object as a Q-ball.

In order for a Q-ball to be stable against dispersion into free particles, its energy must
be less than the energy of Q free particles. Consider a field configuration where inside
some volume V, f has a constant value F and § = wt + f, where 6, is a disposable
constant. Outside of V, f = 0. For large enough V (or Q) we can neglect the surface
energies and treat f as a step function at the boundary of V. The total conserved charge,
which characterizes the system, is @ = wF?2V. The total energy is then

Q?
E= STV + U(F)V. (2.5)

We minimize the energy with respect to V and find that

yo__9 (2.6)
2F2U(F)
and so the energy becomes
2U(F
E=Q F(2 ), (2.7)

Next, we minimize E with respect to F keeping Q fixed and find that F' = F, (cf.
Eqn.(2.4)). For F = F,, the energy of the Q-ball is £ = w,Q. With wo < p, the Q-
ball has lower energy than the energy of Q free particles and is therefore stable against

dispersion. The negative vacuum pressure —U(F,) is balanced by the positive ‘kinetic’
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pressure, w,F?/2. Assuming that there is no further complexity in the potential (e.g
coupling of ¢ to light fermions [6]), Q-balls will be absolutely stable.

The result £ = w,Q is valid only for very large Q-balls. For small Q-balls where
surface energies are important, E can be much larger than w,Q and can in fact be larger
than u@Q. In general there is a lower bound on the allowed values of @ for stable Q-balls.
However, even for a large Q-ball, the surface energy is important as it determines the
shape of the configuration. Since the surface energy is minimized by choosing, for a fixed
volume, the shape with the smallest surface area, the groundstate Q-ball is a sphere.

We now consider gauged U(1) Q-balls (e # 0) where ¢ is coupled to the gauge field
A, as in Eqn.(2.1). One expects gauged Q-balls to be stable as long as their electrostatic
self-energy is much smaller than the other energies. As before, f is non-zero and U(1) is
broken inside the Q-ball. As a consequence of the symmetry breaking, the gauge field is
massive inside and the Q-ball is a U(1) superconductor.

Consider a coherent configuration of ¢ and A4, with a given electric charge eQ. The
lowest energy state will have no ‘electric’ currents and therefore no magnetic field. Fur-
thermore, the lowest energy configuration will be spherically symmetric and stationary.
For this configuration one can choose a gauge such that § = wt (§, = 0) with w constant
and Ae(r) —» 0 as 7 — oo where r = |F]. For definiteness, we assume that w > 0. The
spatial components of the gauge potential are zero as there is no magnetic field. With
the exception of 4, the fields are time independent.

The Lagrangian for the configuration described above is
1 1 1
L=4/2d[——’2 I - 3 ] .
v [rar[-1prs Lgr i g o u(h) (28)
where g(r) = w — eAy(r) and prime denotes d/dr. By varying L with respect to f and g

at fixed w we find the equations of motion:

2
S R P (29)
9"+ %g' —e*fig=0. (2.10)
The total energy and charge are given by
1 1 1
_ 2 (Le2 b o2 Liaa
E_47r/rdr[2f + 5597+ 29"+ U(f) (2.11)
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Q= 47r/r2drfzg (2.12)
Eqn.(2.10) was derived by varying L with respect to Ap. Since Ay does not appear in the
Lagrangian, we must treat Eqn.(2.10) as a constraint equation rather than a dynamical
one. Eqn.(2.9) can be obtained by varying the energy in Eqn.(2.11) with respect to f

under the constraint Eqn.(2.10).
Some qualitative features of the soliton solutions are readily apparent. From Eqns.(2.10,

2.12) we see that
e’Q = lim 4rrig’. (2.13)
For large , g — w—€?Q/4nr, f is small and U(f) ~ p?f?/2. Eqn.(2.9) then becomes
2

f"+;f'-+-(gz—u2)f=0 (2.14)

and f x exp(—ry/u? — w?)/r. For the existence of a localized solution without oscillations
we require w < u. Additionally, for the solution to be well behaved at the origin, f'(r)
and g'(r) should approach zero at least faster than » for » — 0.

We now show that g(r) obeys the following inequalities:
0<g(0) <g(r) < gloo) =w < p. (2.15)
It is convenient to write Eqn.(2.10) in the following form:
(rzg')' = elrifiyg. (2.16)

We will first prove that g(0) > 0. Suppose that g(0) = 0. Since g’(0) = 0, then g(r)
would be zero for all 7. Suppose instead that g(0) < 0. Eqn.(2.10) then implies that r?g’
is a decreasing function of r so that g'(r) goes negative and g(r) < 0 for all r. Neither of
these possibilities are acceptable given that w > 0 and g(r) — w for » — oo. The only
acceptable possibility is that g(0) > 0. We then see that g'(r) is pésitive and therefore
g(r) is a monotonically increasing function of .

Let us consider a different form of the energy integral. After partial differentiation
and using the asymptotic behavior of f and g, Eqns.(2.11,2.12) lead to the new energy

functional

E = -;-wQ + 471'/(17‘1'2 [%f’z + U(f)] (2.17)
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where the constraint Eqn.(2.10) is satisfied. Eqn.(2.9) need not be satisfied. However,
the energy is minimized by choosing f to be a solution of Eqn.(2.9).
Demanding that the Lagrangian (2.8) for the solution is stationary at x = 1 under

scaling of the form r» — &7 leads to the following relation
2 1 2 1 2 2 1 2.2 .
[ arr [——f 2| 43 [ [~ U(s)] =0, (2.18)
2 2e? 2

When used together with Eqns.(2.9-2.12) and the asymptotic forms for f and g, the

energy can be rewritten as
4
E=wQ+ —3’5 / drr? [£7 - 7] (2.19)

Consider the case e = 0, so that ¢’ = 0. In the thin wall approximation we can neglect
the gradient f? term. We then see that £ = wQ. It follows that for thin shell Q-balls
with e # 0 the energy is generally bounded from above by w@ and is less than p@ if
w < p.

Recall that our goal is to find the lowest energy configuration for a given value of the
charge Q. One possibility is to have @ free particles of mass u, the total configuration
having mass p@Q. A second possibility is to have a soliton with charge Q. In this case, the
energy is a very complicated function of the charge. For e = 0 we know that £ — w,Q
for large Q so that for w, < p this configuration is favored over the free particle one.
For e # 0, we expect that the energy will be increased over the e = 0 case due to
Coulomb repulsion with Coulomb energy becoming more important as @ gets large. For
GE/3Q > p we must consider a third possibility, namely that some of the charge can be
put into the Q-ball and some can be put in free particles. Suppose that there exists a Q
(= Q@maz) such that for @ > Qmgz, IE/8Q > p while E/8Q < p for @ < Qmaz. For
Q@ > @maz, a Q-ball with charge Q.: plus Q@ — Qo free particles will be the lowest
energy state for the system.

As discussed above, in very small Q-balls surface energies are important and the Q-
balls are generally unstable and disperse into free particles. There is therefore a minimum
value allowed for the charge which we define to be Qmin. If the gauge coupling is large
enough, Q@maz Will be less than Qmin, and there will be no stable Q-balls
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Clearly, in order to understand gauged Q-balls, we need to determine E as a function of
Q. We can do this analytically, but only in the thin wall approximation (i.e., neglecting
surface energies) and for small values of e and . On the other hand, we can obtain
better results numerically. The results obtained from these two approaches are presented

in Sections III and IV respectively.

3 Thin Wall Approximation

In this section, we study properties of gauged Q-balls by considering trial functions for
the fields. More specifically, we choose a simple trial function for the field f and solve for
Ag (or equivalently, g) using the constraint Eqn.(2.10). These functions can be thought
of as an initial configuration for the @-ball, and will in general have greater energy than
the true groundstate configuration. [Recall that for the true groundstate configuration,
the fields satisfy their equations of motion, Eqns.(2.9,2.10).] As we shall see in the next
section, for a certain range of parameters, the trial functions used here closely approximate
the actual solutions.

We choose f to have a constant value F' inside a sphere of radius R and zero outside.
In real solitons, f changes continuously from F to 0 within a shell of some finite width
T. For large Q-balls (width of the shell much less than the radius of the Q-ball) the
energy associated with the shell is negligible (the shell energy is of order T/R of the
total energy). In this limit we can treat f as a step function and discard the f’? term in
the energy density. This is the thin wall approximation. A, or equivalently g must be
determined by solving the constraint Eqn.(2.10). We find that

[w— e?Q/47 R] Rsinh(eFr)/rsinh(eFR) r <R
g(r) = { [w— e*Q/4nT] r>R (3.1)
where the gauge is chosen so that Ag — 0 for » — oo. The system is now determined by
four parameters, w, @, F, and R. In the following, we will determine the values for w, F,
and R that minimize the energy given a fixed Q.
Eqn.(2.12) for the charge gives one relation among these four parameters:

e’Q [1 _ tanh :n] - (3.2)

w=41rR T
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where z = eF R. We can use this expression to eliminate w from E in Eqn.(2.17).

e2Q? tanhz] ™' 4r
= - —RU(F 3.3
E 8T R [1 z ] + 3 (F) (33)

Minimizing the energy with respect to R (or z) for fixed Q and F gives an expression for

z in terms of @ and F:

z [E?E - 1] = %. (3.4)

In principle, one can use this expression to eliminate R (and z) from the expression for
the energy. The result would be an expression for the energy in terms of @ and F. The
final steps are to minimize the energy with respect to F for fixed @ and to then eliminate
F. The result is the desired expression for F in terms of Q.

Unfortunately, Eqn.(3.4) is a transcendental equation for R in terms of @ and F and
exact results from this point on are difficult if not impossible to obtain. We can however,
carry out the above steps for the case where z « 1. As we shall see, ¢ <« 1 implies
that the Coulomb energy is small compared to the potential and kinetic energies. In this
regime, the radius and total energy of the groundstate Q-ball differ from the e = 0 case
by terms of order 2. We now proceed to calculate these corrections.

For small z, Eqn.(3.4) becomes

3 z’ 3
z (1 - E) =eQC (3.5)
or 2
R=|—39 (1 + ——————62622/302/3) (3.6)
4 F\J2U(F) 45

where C = 3F(F?/2U(F))/?/4r. For most of the potentials that we will consider, C is
of order unity. Our expansion is therefore valid for z2. Note that when e = 0 we recover
the result for the radius of ordinary Q-balls (Eqn.(2.6) with V = 47 R3/3).

We can use Eqns.(3.5,3.6) to eliminate z and R from Eqn.(3.3) to obtain

2U(F 2Q/3C/3

= (3.7)

Again, when e is set to zero we recover the result for the energy of ordinary Q-balls,

Eqn.(2.7).
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Let us assume that the function U//F? is minimized by choosing F = F, (cf. Eqn.(2.4)
in the case where e = 0). The energy in Eqn.(3.7) is minimized for F' = F,(1 — A) where

HE) (R, e

In deriving Eqn.(3.8) we have made use of the fact that 8(U/F?)/0F = 0 when evaluated

at F' = F,. By substituting F = F,(1—A) into Eqn.(3.7) we obtain the desired expression
for E in terms of Q. Likewise, we can use Eqn.(3.8) together with Eqn.(3.6) to find
R = R(Q). Eqn.(3.7) can be put into the following suggestive form:

2U(F)  3e2Q?

E=\V—7Fi " 2wk

(3.9)

The first term is the energy of the Q-ball neglecting gauge interactions. The second term
is the electrostatic self-energy of the Q-ball, with e2Q?/87 R being the electrostatic energy
in the region r > R and e’Q?/407 R the electrostatic energy for r < R. Also in the small
r approximation the first term is the leading order term. The second term is O(z?).

In order to better understand the above results, we consider the following form for the
potential:

/\2 ] 4 2 r2
U(f) = 6:2 —f4— “—2’1- (3.10)

where ) is a dimensionless constant and p is again the mass of a free ¢ particle. We require

that A? > 3/16 so that U(f) > 0 for all f # 0. As discussed above, a necessary condition

for the existence of Q-balls is that the function U(f)/f? has 2 minimum for some non-zero
f. [It is for this reason that we must consider sixth (or higher) order potentials.] This is
always true for the above potential and the minimum occurs at F, = v/3u/2). Note that
the existence of Q-balls does not depend on the metastable false vacuum which exists
" when A? < 1/4.

For ordinary (e = 0) Q-balls with an effective potential for ¢ described by Eqn.(3.10),
we get

E = paQ (3.11)

where a = (1 — 3/16/\2)1/2 = w,/p. Indeed, this energy is less than pQ, the energy of Q
free ¢ particles. The energy gained by bringing a single ¢ particle from the true vacuum

to the false vacuum is just p[1 — a.
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Given the potential, we can readily evaluate the quantities discussed above. We find

302202 2/3
A= 1—25- (u) . (3.12)
T

The energy in terms of Q is given by
3 3 2/3 i
1+ (ﬁ) . (3.13)

TAQ

that

E = pa@Q

Finally, the radius is given by

1/3 173 2 2/3
R= (é_z.) QY [:1+ 4 (/\ €3Q> ] . (3.14)

T uat/3 45 \ Ta

For a given charge @, we see that both the radius and the energy are larger in the
gauged case than in the e = 0 case.

Let us now determine @42, the maximum allowable charge for stable gauged Q-balls.

From Eqn.(3.13), we find that
3\ 2/3
1+ 4l (e_c_z_) } . (3.15)

TAQ

oF

g K

We solve for Qmq: by setting this equal to u:

8t 3/2
Qmaz = _e3a1/2 ( - C!) . (316)
Using Eqn.(3.14), we can rewrite this expression in a more transparent form:
e’Q
= =pl - 3.17
. - Hi-al (3.17)

The left-hand side is just the cost in energy due to Coulomb-type forces for bringing
a particle to the surface of the Q-ball from very far away. The right hand side is the
energy gained (when the Coulomb energy is neglected) in bringing a particle from the
true vacuum into the false vacuum Q-ball interior. As stated above, and verified by
Eqn.(3.17), Qmaz defines the value of Q@ where it becomes energetically favorable to keep
additional charges outside and far away from the Q-ball.

Of course Eqns.(3.12-3.17) are valid only when z is small. Recall that to leading order

_32QF [ F? \V°
z® = yp (2U(F)) . (3.18)

10
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For the potential Eqn.(3.10), we have that

3v/36e°Q
3 x 3.19
* 8ria ( )
At Q = Qmaz, = = [3(1 —a)/a]'’?. It therefore follows that z < 1 for & > 3/4 or

A? > 3/7.
From Egns. (3.16) and (3.17) we can get the maximum radius for this configuration,

_2)\ l1—a

=V (3.20)

-R-ma:

In order to interpret the breaking of the U(1) symmetry inside the Q-ball as super-
conductivity, we need to compare the R,,,; with the penetration length £ associated with
the mass of the photon (or equivalently, the Compton wavelength of the gauge field in a
region where the U(1) symmetry is broken). We find that

1 1 27

=— == . 3.21
¢ my ek, \/§,ue ( )

By comparing this with R,,,., we get,
a 2 z = 6 2 Rmaa:- (3'22)

We see that the results in this section are valid only in the regime where the penetration
length is greater than the radius. In this regime, the charge distribution is roughly uniform
being only slightly enhanced near the surface of the Q-ball.

We conclude this section by considering the potential Eqn.(3.10) with A* = 3/16. As
we now show, in this case { << R, and the Q-ball is superconducting. For this case,
a = 0 and the “false” vacuum (F = F, = 2p) is degenerate with the “true” vacuum
(F = 0). The potential energy is therefore zero inside as well as outside of the Q-ball and
is non-zero only in the shell in which F' changes from 2u to 0. Let T be the thickness
of this shell and R be the radius of the Q-ball. From Eqn.(2.11) v;*e find the following

approximate expression for the energy:

8rulR? e2Q? z?A(z)
E ~ 1 RTut 3.23
T Vteg\tT g T (3.23)

where

A(z):( tanhz )’( 11 ) (3.24)

z — tanhz ztanhz  sinhiz

11
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Eqn.(3.23) deserves some explanation. First, we note that each of the terms in this
expression is accurate only up to numerical factors of order unity. The first term is the
scalar gradient term where we have set f' = F,/L = 2u/L. The second and third terms
are the Coulomb and f2¢* terms respectively. The last term is the potential energy in
the shell where the average energy density in the shell is taken to be pu*/4. .

Minimizing the energy with respect to T we find that T = 24/2p~1. Substituting this
into Eqn.(3.23) we find an expression for E in terms of R and Q. Let us now assume that
z > 1. We will check this assumption at the end of the calculation. For z 3> 1 we find
that A(z) ~z~3 and

e?Q? 1
E ~ 4V27u°R? + - (1 + ﬂ) : (3.25)
Minimizing this expression with respect to R we find that
-1/6 2/3
R="2 ; (;—f) (3.26)
and
E 3 (eQ)*/3. (3.27)

; = 911/6,1/3
where we have only used the leading order terms. As before, we find Qma. by solving

8E/8Q = p. We obtain

T

an: = m

For weak couplings this can be quite large.
Eqns.(3.23-3.28) are valid only for z > 1 and we must check that this is indeed the
case. For Q = Qumas, = = (24/2€)71, which is indeed greater than one for weak (e < 273/?)

(3.28)

coupling. For stronger couplings or for smaller @ the large z approximation breaks down.
Finally, we compare the size of these Q-balls to the penetration length. From Eqn.(3.26)

we see that

1
Rlo=qme. = § Tine? (3.29)

This is greater than the penetration length ¢ = 1/(eu) for weak (e < 1/(4v/2)) coupling.

It is in this limit that the interior of the Q-balls becomes superconducting. From Eqn.(3.1)
it is easy to see that the charge density at the center of the Q-ball is O(e~%) of the charge
density near the surface and the width T of the shell in which must of the charge resides

is of order (eF)™! ~ (my)~! as expected for a lump of superconductor.
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4 Numerical Results

In this section we present numerical solutions of gauged Q-balls. These results are
used to 1) verify the general properties of gauged Q-balls derived in Section II; 2) check
the accuracy of the thin wall approximation; and 3) explore properties of gauged Q-balls
that cannot be studied in the thin wall approximation. _

The thin wall approximation discussed above is applicable to a rather limited set of
Q-balls. Specifically, the results of Section III are valid for Q-balls in which the surface
energy is small compared to the volume energy (i.e., the radius of the Q-ball is large
compared to the thickness of the shell within which f changes from F to 0). However,
for large values of e Q-balls have a maximum size that is small, so surface energies are
always important. Moreover, many of the results in Section IIl assume that z < 1 where
z is given in Eqns.(3.18,3.19). This, for example, implies that the equations for Qmq. are
valid only for certain values of A\. Because of the limitations of the thin shell analysis
(the only analytical approach that we found tractable) the numerical analysis for gauged
Q-balls is particularly important.

Consider the Lagrangian Eqn.(2.8) with the potential given in Eqn.(3.10). We scale
the dimensionful quantities f, g, and » by appropriate factors of . In order to keep the
notation simple, we use the same symbols for the dimensionless quantities in this section
as we did for the dimensionful quantities in the previous sections (e.g., r here is equal to

r/p of Sections II and III). For physical quantities such as E, we write the factors of p

explicitly.
From the Lagrangian and the potential we get the equations of motion
1 62
~5arf)= - f+ (N -+ ) (4.1)
147
~5(r9) = €’gf* (4.2)
with the charge and the energy given by
Q= 47r‘/drr'"_qf2 (4.3)
1 1 1 1 1 1
E—4 d?[_12_12 L2 2 (_23__4_z>]. )
mu [ dret |S(F) + 550 + 5000+ (G0 = 1+ 5 (4.4)
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As discussed above, a finite energy Q-ball solution must satisfy f'(0) = ¢'(0) = 0 and
g(o0) < 1. Furthermore, a Q-ball solution with minimum energy for a given charge will
be non-oscillatory (zero node solution).

To find acceptable Q-ball solutions we numerically integrate Eqns.(4.1,4.2) from r» = 0
to r = oo (or rather, to a point well outside the Q-ball, i.e., where f ~ 0). [Recall that
we required A* > 3/16 so that U(f) > 0 for all r.] Eqns.(4.1,4.2) are equivalent to a
system of four first order differential equations. In order to find Q-ball solutions, we must
determine the boundary conditions (i.e., the values of f,g and their first derivatives at
r = 0). We know that f'(0) = ¢'(0) = 0. Fixing g(0) determines the charge. f(0) is then
adjusted to give a non-oscillatory solution with f(r) — 0 for » — oo. [For definiteness,
we choose f(0) > 0.]

Let us be more specific. For a given choice of f(0), f(r) will (1) grow without bound,
(2) become negative for some r, (3) change from a decreasing to an increasing function of
7, or (4) go smoothly to 0 a 7 — oco. Note that the gauged case differs from the ungauged
case in that f(r) can begin as an increasing function of r and then turn over and go
smoothly to zero at infinity.

In practice, a value of f(0) is selected, and the solution is integrated out until it
becomes clear which of the four types it belongs to. 1 or 2 type solutions indicate that
f(0) was too big while type 3 solutions indicate that f(0) was too small. The value of
f(0) is appropriately adjusted and the process is repeated until the desired accuracy is
obtained. The value of g{oco) must then be checked to make sure it is less than 1. In Fig.1
we plot f(r) and g(r) as a function of r for a gauged Q-ball with e? = 0.01 and Q =~ 10*

For comparison, we show on the same plot f(r) and w for an ordinary (e = 0) Q-ball of
roughly the same charge. Note that g(r) is a monotonically increasing function of 7 as is
expected from Eqn.(2.15). In Fig.2, we plot the charge density p(r) = 2gf? as a function
of » for the gauged and ordinary Q-balls in Fig.1. While charge is distributed uniformly
inside the ordinary Q-ball, the charge is pushed towards the surface of the gauged Q-ball.
Note also that the radius of the configuration has grown compare to the e = 0 case.
In Fig.3, we plot E/uQ as a function of Q for various values of e. The unstable regions

discussed in the text, those where E/9Q > p are now apparent. Note that as we increase

14
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the value of e?, the instability occurs for smaller values of Q. We also see that the slope
for the e = 0 case never changes sign, indicating the absence of an instability for ordinary
Q-balls. In Fig.4 we plot f(r) and g(r) for a Q-ball configuration using A?> = 0.64 and
e = 0.01. The charge for the configuration is 88,921. For comparison, we show the f(r)
and g(r) used in the thin shell approximation. This indicates that the analytic ansatz
used is not to far off. Finally, as mentioned above, there exists a value of e(= e ) above
which Qmaz < Qmin For € > e, there are no stable Q-balls. In Fig. 5. we plot e,y as a

function of A.

5 Gauged Nontopological Solitons with Fermions

The work presented above can easily be extended in a number of ways. The one we
chose was to add Fermions to the previous model. Here we study nontopological solitons
that occur when charged fermions are trapped inside a region of false vacuum|7]. Consider
a theory with a real scalar fleld ¢ and Dirac fermion field 1. The scalar potential is taken
to be

1 o\?
V=-“<1——> 5.1
Lk - (5.1)

where we assume that ¢ = 0 is the true vacuum and ¢ = o, is the false vacuum. The

Lagrange density for v is
Ly = 7 (Bu+ied)p—m (1= Z) gy (5.2)

so that 1 has mass m in the true vacuum and is massless in the false vacuum.
The case where e = 0 was considered by Lee and Pang[7] and we briefly review their
results before turning to the gauged case. Suppose there are N 3 particles trapped in a

spherical region of false vacuum. The energy for the configuration is

31 / 3\3NY3I o
E~2T (2 T Lot RR. 5.
4 (27r) Rz T g Hoett (5.3)

The first term is the fermi energy for the ¢ particles while the second term is the energy in
the surface of the soliton. [For the potential Eqn.(5.1) the false vacuum is degenerate with

the true vacuum and so there is no volume term in the expression for the total energy.]
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For fixed N the energy is minimized by choosing

=[5 o0

16 \27 po?

At this radius, the energy of the soliton is given by:

7 5\ 1/9 )
b= 2 (%W') (no2) " e, (5.5)

As discussed in [7], since the exponent of NV is less than 1, solitons with large enough N
will have energy less than N free ¢ particles and will therefore be stable against dispersion.
More precisely, for N > (3'%x5/2'?) (po?/m3)’, E < Nm and the solitons would be stable
against dispersion into free particles.

Suppose now that the fermions are coupled to a U(1) gauge field A, as in Eqn.(5.2).
The energy will be then given by Eqn.(5.3) plus a Coulomb term Be*N?*/R where 3 is
a number of order 10~! that depends on the charge distribution of the fermions. [For
a uniform charge distribution, 8 = 3/207.] Again, we keep N fixed and minimize the

energy with respect to R. We find that

(5.6)

Rk 1.44N4/3 4 ge2N?]Y°
T 4r pol

and

A 4/3 2ar2)%/3
E=|—5"° (144N + Be*N?) (5.7)

For stable solitons to exist, E < mN for some range of values of N. Clearly, this depends
on e, the ratio po?/m?® and §. e and po?/m? are model dependent parameters. 3 on the
other hand, depends on the structure of the soliton and must be determined by explicitly
solving for the soliton configuration. However, the exact value of B is not necessary for
the present discussion.

In Fig. 6 we show E/Nm against N for two representative choices of e and po?/m? [one
in which stable solitons exist and the other in which they do not] and take § = 0.048(~
3/20r). We see that fermion NTSs can occur even when the fermions are coupled to a
U(1) gauge field. As with gauged Q-balls there is a maximum charge. Furthermore, in
certain theories (c.f. example 2 in fig. 2) stable NTSs do not exist at all
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6 Summary and Discussion

Solitons, whether topological or nontopological, may be interesting for cosmology as
well as particle physics. The cosmological implications of topological solitons such as do-
main walls, cosmic strings and magnetic monopoles have been studied for some time. On
the other hand, the cosmological significance of nontopological solitons has been consid-
ered only recently. The discovery of a relic abundance of NTSs would be clear evidence
for a phase transition in the early Universe and therefore have important implications for
particle physics. Moreover, NTSs are potential candidates for the dark matter in galactic
halos [5]. It is therefore of great interest to explore the possible particle physics theories
in which NTSs might arise.

NTSs occur in theories with a continuous symmetry and therefore a conserved Noether
charge. Previous investigations of NTSs have, for the most part, concentrated on theories
with global symmetries. However, many of the theories that we know of (or at least believe
in) involve gauge or local symmetries. In this work, we have considered NTSs (Q-balls)
in the simplest gauge theory; namely, one with a local U(1) symmetry.

For fixed charge, the NTS is the groundstate configuration. Stability against dispersion
into free particles is demonstrated by computing the energy of a soliton solution of charge
Q and comparing this with the energy of Q free particles. Stability against fission, evap-
oration of charge from the surface [6,8)], and gravitational collapse must also be checked
[9]. The existence of stable NTSs therefore depends on particle physics phenomenology
such as the shape of the scalar potential or the coupling of scalars to fermions. This is
in contrast to topological solitons where existence and stability are determined from the
symmetry breaking pattern of a given theory [e.g., stable vortices or cosmic strings occur
in any theory in three spatial dimensions in which a U(1) symmetry is spontaneously
broken].

Coleman [4](see also Rosen [3]) has demonstrated the existence of stable NTSs or
Q-balls in a theory with a single complex scalar field and a global U(1) symmetry. We
have considered a similar model but with a local U(1) symmetry and find that gauge
interactions affect the structure and stability of the Q-ball in a physically intuitive way.

For small gauged Q-balls (R « my') the configuration is perturbed only slightly from
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the e = 0 case with a small charge enhancement near the surface of the Q-ball. For larger
Q-balls (R >> my') most of the charge is distributed at the surface. This is consistent
with the fact that the interior of the Q-ball is superconducting. Furthermore, there is
a maximum size for stable Q-balls which occurs once the Coulomb barrier becomes too
large. Finally we recall an important difference with the e = 0 case; the fact that.it is

impossible to have gauged Q-matter.
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Figure Captions
Plot of the scalar field f(r) and the gauge field g(r) = w — eAo as a function of r.
The solid lines are for e? = 0.01 with Q = 11,119. The dashed lines are for e = 0
with Q = 10,941. For both cases, we have set A? = 0.2.

Plot of the charge density p(r) = 2g9f? as a function of r for the two field configu-
rations plotted in Fig.1. Notice that in the gauged case, the charge accumulates at

the boundary of the Q-ball.
Plot of E/uQ as a function of @ with A? = 0.20 for various values of e.

Plot of f(r) and g(r) (solid lines) for a Q-ball configuration with A? = 0.64 and
e? = 10~%. Q for the configuration shown is 88,921. The dashed lines are the

corresponding f(r) and g(r) used in the thin wall approximation.

Plot of e as a function of A. As discussed in the text, for € > e there are no

stable Q-balls as Qnaz is less than Qpin.

E/mN as a function of N for the fermion ball.
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